Hongos en el espacio
DOI:
https://doi.org/10.69976/aspast.v1n1.2Palabras clave:
Astrobiología , Biotecnología, Misiones espaciales, resiliencia fúngicaResumen
Este artículo explora la capacidad de adaptación y resistencia de los hongos en el espacio, subrayando su relevancia para la astrobiología y la sostenibilidad de misiones espaciales de larga duración. A través de una revisión bibliográfica de estudios publicados en bases de datos académicas de alto impacto como Google Scholar, PubMed, Scopus y Web of Science, se analizaron investigaciones sobre la resiliencia de estos organismos frente a condiciones extremas, incluyendo radiación, microgravedad y vacío espacial. Asimismo, se examina el potencial biotecnológico de los hongos para la producción de alimentos, medicamentos y materiales en entornos de recursos limitados y se identifican también riesgos significativos asociados a la biocontaminación y sus posibles efectos adversos sobre la salud de los astronautas, la integridad del equipo y la protección planetaria. En este contexto, se enfatiza la necesidad de desarrollar estrategias efectivas de control micológico y medidas de protección para mitigar estos riesgos en futuras misiones.
Descargas
Referencias
Aban, J. L. (2024). Symbiotic fungal biodiversity, structure, role and benefits to their host plants-discovering microbes with potential agricultural significance: A literature probe. International Journal of Biosciences, 24(3), 163-174. http://dx.doi.org/10.12692/ijb/24.3.163-174
Abdrassulova, Z. T., Salybekova, N. N., Childibayev, J. B., Kurmanbaeva, M. S., Ramazanova, A. A., & Bazargaliyeva, A. A. (2016). Biological and Ecological Features of the Fungus Cladosporium Herbarum. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 7(1), 2075-2083.
Baba, A. I., Mir, M. Y., Riyazuddin, R., Cséplő, Á., Rigó, G., & Fehér, A. (2022). Plants in Microgravity: Molecular and Technological Perspectives. International Journal of Molecular Sciences, 23(18), 10548. https://doi.org/10.3390/ijms231810548
Bahram, M., & Netherway, T. (2022). Fungi as mediators linking organisms and ecosystems. FEMS microbiology reviews, 46(2), fuab058. https://doi.org/10.1093/femsre/fuab058
Benoit, M. R., Li, W., Stodieck, L. S., Lam, K. S., Winther, C. L., Roane, T. M., & Klaus, D. M. (2006). Microbial antibiotic production aboard the international Space Station. Applied Microbiology and Biotechnology, 70, 403–411. https://doi.org/10.1007/s00253-005-0098-3
Blachowicz, A., Singh, N. K., Wood, J. M., Debieu, M., O’Hara, N. B., Mason, C. E., & Venkateswaran, K. (2021). Draft Genome Sequences of Aspergillus and Penicillium Species Isolated from the International Space Station and Crew Resupply Vehicle Capsule. Microbiology Resource Announcements, 10(13), e01398-20. https://doi.org/10.1128/MRA.01398-20
Cardwell, G., Bornman, J. F., James, A. P., & Black, L. J. (2018). A Review of Mushrooms as a Potential Source of Dietary Vitamin D. Nutrients, 10(10), 1498. https://doi.org/10.3390/nu10101498
Chander, A. M., Teixeira, M. D. M., Singh, N. K., Williams, M. P., Simpson, A. C., Damle, N., Parker, C. W., Stajich, J. E., Mason, C. E., Torok, T., & Venkateswaran, K. (2022). Description and genome characterization of three novel fungal strains isolated from Mars 2020 mission-associated spacecraft assembly facility surfaces—recommendations for two new genera and one species. Journal of Fungi, 9(1), 31. https://doi.org/10.3390/jof9010031
Checinska, A., Urbaniak, C., Malli, G. B., Stepanov, V. G., Tran, Q., Wood, J. M., Minich, J., McDonald, D., Mayer, T., Knight, R., Karouia, F., Fox, G. E., & Venkateswaran, K. (2019). Characterization of the total and viable bacterial and fungal communities associated with the International Space Station surfaces. Microbiome, 7(50), 1-21. https://doi.org/10.1186/s40168-019-0666-x
Chen, X., Wang, Y., Wang, Y., Zhang, Y., Shen, Y., He, X., & Xiao, C. (2023). A Natural Moisture Gradient Affects Soil Fungal Communities on the South Shore of Hulun Lake, Inner Mongolia, China. Journal of fungi (Basel, Switzerland), 9(5), 549. https://doi.org/10.3390/jof9050549
Cook, K., Sharma, J., Taylor, A. D., Herriott, I., & Taylor, D. L. (2022). Epiphytic fungal communities vary by substrate type and at submetre spatial scales. Molecular Ecology, 31(6), 1879-1891. https://doi.org/10.1111/mec.16358
Cortesão, M. F. (2022). Morphological and molecular adaptation of Aspergillus niger to simulated spaceflight and Mars-like conditions. [Thesis]. University Goettingen Repository, Alemania.
Cortesão, M., Schütze, T., Marx, R., Moeller, R., & Meyer, V. (2020). Fungal Biotechnology in Space: Why and How? En H. Nevalainen (Eds.), Grand Challenges in Fungal Biotechnology (pp. 501-535). Springer. https://doi.org/10.1007/978-3-030-29541-7_18
Cortesão, M., Siems, K., Koch, S., Beblo-Vranesevic, K., Rabbow, E., Berger, T., Lane, M., James, L., Johnson, P., Waters, S. M., Verma, S. D, Smith, D. J., & Moeller, R. (2021). MARSBOx: fungal and bacterial endurance from a balloon-flown analog mission in the stratosphere. Frontiers in microbiology, 12, 601713. https://doi.org/10.3389/fmicb.2021.601713
de Menezes, G. C. A., Câmara, P. E., Pinto, O. H. B., Carvalho-Silva, M., Oliveira, F. S., Souza, C. D., Reynaud, C. E. Rosa, L. H. (2021). Fungal diversity present on rocks from a polar desert in continental Antarctica assessed using DNA metabarcoding. Extremophiles, 25, 193-202. https://doi.org/10.1007/s00792-021-01221-4
de Oliveira, V. B., de Souza, A. F., Lins, U. M. D. B. L., da Silva Andrade, R. F., de Campos-Takaki, G. M., & de Lima, M. A. B. (2022). Antimicrobial potential of filamentous fungi growing on renewable substrates. Research, Society and Development, 11(11), e570111133958. https://doi.org/10.33448/rsd-v11i11.33958
Derbyshire, E. J., Theobald, H., Wall, B. T., & Stephens, F. (2023). Food for our future: the nutritional science behind the sustainable fungal protein – mycoprotein. A symposium review. Journal of Nutritional Science, 11(12), e44. https://doi.org/10.1017/jns.2023.29
Deshevaya, E. A., Fialkina, S. V., Shubralova, E. V., Tsygankov, O. S., Khamidullina, N. M., Vasilyak, L. M., Pecherkin, V. Y., Shcherbakova, V. A., Nosovsky, A. M., & Orlov, O. I. (2024). Survival of microorganisms during two-year exposure in outer space near the ISS. Scientific Reports, 14(1), 334. https://doi.org/10.1038/s41598-023-49525-z
Devarayan, K., Sathishkumar, Y., Lee, Y. S., & Kim, B. S. (2015). Effect of microgravity on fungistatic activity of an -aminophosphonate chitosan derivative against aspergillus niger. PloS One, 10(10), e0139303. https://doi.org/10.1371/journal.pone.0139303
Dublin, M., & Volz, P. A. (1973). Space related research in mycology concurrent with the first decade of manned space exploration. Space Life Sciences, 4, 223-230. https://doi.org/10.1007/BF00924469
Evans, C. A., Robinson, J. A., & Tate-Brown, J. M. (2009). Research on the International Space Station: An Overview. En Proceedings of the 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, 5–9. https://doi.org/10.2514/6.2009-186
Glamočlija, J., & Soković, M. (2017). Fungi a source with huge potential for “mushroom pharmaceuticals. Lekovite Sirovine, 37, 50-56 https://doi.org/10.5937/LEKSIR1737050G
Gomoiu, I., Chatzitheodoridis, E., Vadrucci, S., & Walther, I. (2013). The Effect of Spaceflight on Growth of Ulocladium chartarum Colonies on the International Space Station. PloS One, 8(4), e62130. https://doi.org/10.1371/journal.pone.0062130
Gomoiu, I., Chatzitheodoridis, E., Vadrucci, S., Walther, I., & Cojoc, R. (2016). Fungal spores viability on the International Space Station. Origins of Life and Evolution of Biospheres, 46(4), 403-418. https://doi.org/10.1007/s11084-016-9502-5
Greetham, L., McIntyre, G., Bayer, E., Winiski, J., & Araldi, S. (2014). Mycological Biopolymers Grown in Void Space Tooling. https://patentimages.storage.googleapis.com/5b/8d/88/06f5660ba6a1e1/US11277979.pdf
Grimm, D., & Wösten, H. A. B. (2018). Mushroom cultivation in the circular economy. Appl Microbiol Biotechnol, 102, 7795–7803. https://doi.org/10.1007/s00253-018-9226-8
Grossart, H. P., Van den Wyngaert, S., Kagami, M., Wurzbacher, C., Cunliffe, M., & Rojas-Jimenez, K. (2019). Fungi in aquatic ecosystems. Nature Reviews Microbiology, 17, 339–54. https://doi.org/10.1038/s41579-019-0175-8
Günyar, Ö. A., & Uztan, A. H. (2021). Environmental Mycobiotechnology in Special Reference to Fungal Bioremediation. En: N. Saglam, F. Korkusuz & R. Prasad (Eds.), Nanotechnology Applications in Health and Environmental Sciences. Nanotechnology in the Life Sciences (pp. 361-383), Springer. https://doi.org/10.1007/978-3-030-64410-9_20
Guzmán-Chávez, F., Zwahlen, R. D., Bovenberg, R. A. L., & Driessen, A. J. M. (2018). Engineering of the Filamentous Fungus Penicillium chrysogenum as Cell Factory for Natural Products. Frontiers in Microbiology, 9, 2768. https://doi.org/10.3389/fmicb.2018.02768
Hupka, M., Kedia, R., Schauer, R., Shepard, B., Granados-Presa, M., Vande, M., & Flores, P. (2023). Morphology of Penicillium rubens Biofilms Formed in Space. Life, 13(4), 1001. https://doi.org/10.3390/life13041001
Kaur, K., & Verma, R. K. (2021). Fungal resources: Current utilization, future prospects, and challenges. En: J. Singh & P. Gehlot (Eds.), New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 15-38). https://doi.org/10.1016/B978-0-12-821005-5.00002-8
Khan, A. A., Khan, A. A., Bacha, N., Ahmad, B., Lutfullah, G., Farooq, U., & Cox, R. J. (2014). Fungi as chemical industries and genetic engineering for the production of biologically active secondary metabolites. Asian Pacific Journal of Tropical Biomedicine, 4(11), 859-870. https://doi.org/10.12980/APJTB.4.2014APJTB-2014-0230
Kirchhoff, L., Olsowski, M., Rath, P. M., & Steinmann, J. (2019). Exophiala dermatitidis: Key issues of an opportunistic fungal pathogen. Virulence, 10(1), 984–998. https://doi.org/10.1080/21505594.2019.1596504
Kittang, A.-I., Iversen, T.-H., Fossum, K. R., Mazars, C., Carnero-Diaz, E., Boucheron-Dubuisson, E., Le Disquet, I., Legué, V., Herranz, R., Pereda-Loth, V., & Medina, F. J. (2014). Exploration of plant growth and development using the European modular cultivation system facility on the international Space Station. Plant Biololgy, 16(3), 528–538. https://doi.org/10.1111/plb.12132
Koehle, A. P., Brumwell, S. L., Seto, E. P., Lynch, A. M., & Urbaniak, C. (2023). Microbial applications for sustainable space exploration beyond low Earth orbit. npj Microgravity, 9(1), 47. https://doi.org/10.1038/s41526-023-00285-0
Kovalev, V. S., Grandl, W., Manukovsky, N. S., Tikhomirov, A. A., & Böck, C. (2022). Modeling a lunar base mushroom farm. Life sciences in space research, 33, 1–6. https://doi.org/10.1016/j.lssr.2021.12.005
Kržišnik, D., & Gonçalves, J. (2023). Environmentally conscious technologies using fungi in a climate-changing world. Earth, 4(1), 69-77. https://doi.org/10.3390/earth4010005
Lange, L. (2014). The importance of fungi and mycology for addressing major global challenges. IMA Fungus, 5, 463-471. https://doi.org/10.5598/IMAFUNGUS.2014.05.02.10
Liu, Q., Zhang, Q., Dang, L., Chen, N., Yin, Z., Ma, L., Feng, Y., Li, W., Wei, Y., Zhang, W., Lu, L., Dong, C., Yuan, J., & Xiao, K. (2024). The interaction between Aspergillus brasiliensis and exposed copper circuits in the space microgravity environment. Corrosion Science, 234, 112132. https://doi.org/10.1016/j.corsci.2024.112132
Macías-Paz, I. U., Pérez-Hernández, S., Tavera-Tapia, A., Luna-Arias, J. P., Guerra-Cárdenas, J. E., & Reyna-Beltrán, E. (2023). Revista Argentina de Microbiología, 55(2), 1889-198. https://doi.org/10.1016/j.ram.2022.08.003
Makimura, K., Satoh, K., Sugita, T., & Yamazaki, T. (2011). Fungal biota in manned space environment and impact on human health. Nihon Eiseigaku zasshi. Japanese Journal of Hygiene, 66(1), 77-82. https://doi.org/10.1265/jjh.66.77
Manukovsky, N. S., Kovalev, V. S., Trifonov, S. V., & Hranovskaya, O. V. (2023). Investigation of the production and dietary features of oyster mushrooms for a planned lunar farm. Heliyon, 9(5), e15524. https://doi.org/10.1016/j.heliyon.2023.e15524
Martirena-Ramírez, A., Serrano-Gamboa, J. G., Pérez-Llano, Y., Zenteno-Alegría, C. O., Iza-Arteaga, M. L., del Rayo, M., Fernández-Ocaña, A. M., Batista-García, R. A., & Folch-Mallol, J. L. (2024). Aspergillus brasiliensis E_15.1: A Novel Thermophilic Endophyte from a Volcanic Crater Unveiled through Comprehensive Genome-Wide, Phenotypic Analysis, and Plant Growth-Promoting Trails. Journal of Fungi, 10(8), 517. https://doi.org/10.3390/jof10080517
McDonald, J. T., Stainforth, R., Miller, J., Cahill, T., da Silveira, W. A., Rathi, K. S., Hardiman, G., Taylor, D., Costes, S. V., Chauhan, V., Meller, R., & Beheshti, A. (2020). NASA GeneLab Platform Utilized for Biological Response to Space Radiation in Animal Models. Cancers, 12(2), 381. https://doi.org/10.3390/cancers12020381
Mermel, L.A. (2012). Infection Prevention and Control during Prolonged Human Space Travel. Clinical Infectious Diseases, 56(1), 123–130. https://doi.org/10.1093/cid/cis861
Mousavi, B., Hedayati, M., Hedayati, N., Ilkit, M., & Syedmousavi, S. (2016). Aspergillus species in indoor environments and their possible occupational and public health hazards. Curr Med Mycol, 2, 36–42. https://doi.org/10.18869/acadpub.cmm.2.1.36
Mwangi, R. W., Macharia, J. M., Wagara, I. N., & Bence, R. L. (2022). The antioxidant potential of different edible and medicinal mushrooms. Biomedicine & Pharmacotherapy, 147(2022), 112621. https://doi.org/10.1016/j.biopha.2022.112621
Nastasi, N., Haines, S. R., Bope, A., Meyer, M. E., Horack, J. M., & Dannemiller, K. C. (2024). Fungal diversity differences in the indoor dust microbiome from built environments on earth and in space. Scientific Reports, 14(1), 11858. https://doi.org/10.1038/s41598-024-62191-z
Netherway, T., Bengtsson, J., Krab, E. J., & Bahram, M. Biotic interactions with mycorrhizal systems as extended nutrient acquisition strategies shaping forest soil communities and functions. Basic and Applied Ecology, 50, 25–42. https://doi.org/10.1016/j.baae.2020.10.002
Neuberger, K., Lux-Endrich, A., Panitz, C., & Horneck, G. (2015). Survival of spores of Trichoderma longibrachiatum in space: data from the space experiment SPORES on EXPOSE-R. International Journal of Astrobiology, 14(1), 129-135. https://doi.org/10.1017/S1473550414000408
Nunes, J. M., Bizerra, F. C., Ferreira, R. C. E., & Colombo, A. L. (2013). Molecular identification, antifungal susceptibility profile, and biofilm formation of clinical and environmental Rhodotorula species isolates. Antimicrob Agents Chemother, 57(1), 382–389. https://doi.org/10.1128/aac.01647-12
Onofri, S., Selbmann, L., Barreca, D., Isola, D., & Zucconi, L. (2009). Do fungi survive under actual space conditions? Searching for evidence in favour of lithopanspermia. Plant Biosystems, 143(1), S85-S87. https://doi.org/10.1080/11263500903208393
Onofri, S., Selbmann, L., Pacelli, C., De Vera, J. P., Horneck, G., Hallsworth, J. E., & Zucconi, L. (2018). Integrity of the DNA and cellular ultrastructure of cryptoendolithic fungi in space or Mars conditions: a 1.5-year study at the International Space Station. Life, 8(2), 23. https://doi.org/10.3390/life8020023
Onofri, S., de Vera, J.-P., Zucconi, L., Selbmann, L., Scalzi, G., Venkateswaran, K. J., Rabbow, E., de la Torre, R., & Horneck, G. (2015). Survival of Antarctic Cryptoendolithic Fungi in Simulated Martian Conditions On Board the International Space Station. Astrobiology, 15(12), 1052-1059. https://doi.org/10.1089/ast.2015.1324
Owczarek-Kościelniak, M. M., Chlebicki, A., & Sterflinger, K. Aureobasidium pullulans from Juncus trifidus L. roots. (2016). Phytotaxa, 266(2), 125-133. https://doi.org/10.11646/phytotaxa.266.2.6
Pacelli, C., Alessia, C., Siong, L. M., Lorenzo, A., Moeller, R., Fujimori, A., Igor, S., & Silvano, O. (2021). Insights into the Survival Capabilities of Cryomyces antarcticus Hydrated Colonies after Exposure to Fe Particle Radiation. Journal of Fungi, 7(7), 495. https://doi.org/10.3390/JOF7070495
Pacelli, C., Selbmann, L., Zucconi, L., De Vera, J. P., Rabbow, E., Horneck, G., de la Torre, R., & Onofri, S. (2016). BIOMEX experiment: ultrastructural alterations, molecular damage and survival of the fungus Cryomyces antarcticus after the experiment verification tests. Origins of Life and Evolution of Biospheres, 47, 187-202. https://doi.org/10.1007/s11084-016-9485-2
Pasanen, A.-L., Kalliokoski, P., Pasanen, P., Jantunen, M. J., & Nevalainen, A. (1991). Laboratory studies on the relationship between fungal growth and atmospheric temperature and humidity. Environment International, 17(4), 225-228. https://doi.org/10.1016/0160-4120(91)90006-C
Pernice, M. C., Forn, I., Logares, R., & Massana, R. (2024). A fungi hotspot deep in the ocean: explaining the presence of Gjaerumia minor in equatorial Pacific bathypelagic waters. Scientific Reports, 14(1), 10601. https://doi.org/10.1038/s41598-024-61422-7
Pierson, D., Botkin, D., Bruce, R., Castro, V., Smith, M., Oubre, C., & Ott, C. (2012). Environmental monitoring: a comprehensive handbook. En: Environmental monitoring: a comprehensive handbook. DHI Publishing, LLC River Grove, IL.
Pilafidis, S., Diamantopoulou, P., Gkatzionis, K., & Sarris, D. (2022). Valorization of agro-industrial wastes and residues through the production of bioactive compounds by macrofungi in liquid state cultures: Growing circular economy. Applied Sciences, 12(22), 11426. https://doi.org/10.3390/app122211426
Ponizovskaya, V. B., Dyakov, M. Yu., Antropova, A. B., Bilanenko, E. N., Mokeeva, V. L., & Ilyin, V. K. (2017). The survival of micromycetes exposed to space conditions. Moscow University Biological Sciences Bulletin, 72, 6-12. https://doi.org/10.3103/S0096392517010023
Prasad, B., Richter, P., Vadakedath, N., Haag, F. W., Strauch, S. M., Mancinelli, R., Schwarzwälder, A., Etcheparre, E., Gaume, N. & Lebert, M. (2021). How the space environment influences organisms: An astrobiological perspective and review. International Journal of Astrobiology, 20(2), 159-177. https://doi.org/10.1017/S1473550421000057
Recio, R., Meléndez-Carmona, M. Á., Martín-Higuera, M. C., Pérez, V., López, E., López-Medrano, F., & Pérez-Ayala, A. (2019). Trichoderma longibrachiatum: an unusual pathogen of fungal pericarditis.Clinical microbiology and infection, 25(5), 586–587. https://doi.org/10.1016/j.cmi.2019.02.006
Sánchez, C. Reactive oxygen species and antioxidant properties from mushrooms. Synthetic and Systems Biotechnology, 2(1), 13-22. https://doi.org/10.1016/j.synbio.2016.12.001
Sánchez, F. J., De la Torre, R., Sancho, L., Mateo-Martí, E., Martínez-Frías, J., & Horneck, G. (2010). Aspicilia fruticulosa: one of the most resistant organisms to outer space conditions and Mars simulated environment. Origins of Life and Evolution of the Biosphere, 40, 546-547.
Satyaveer & Rajanna, K. B. (2022). Health Benefits and Medicinal Value of Mushroom. Agriculture & Environment, 3(9), 13-17.
Satoh, K., Alshahni, M. M., Umeda, Y., Komori, A., Tamura, T., Nishiyama, Y., Yamazaki, T., & Makimura, K. (2021). Seven years of progress in determining fungal diversity and characterization of fungi isolated from the Japanese Experiment Module KIBO, International Space Station. Microbiology and Immunology, 65(11), 463-471. https://doi.org/10.1111/1348-0421.12931
Satoh, K., Yamazaki, T., Nakayama, T., Umeda, Y., Alshahni, M. M., Makimura, M., & Makimura, K. (2016). Characterization of fungi isolated from the equipment used in the International Space Station or Space Shuttle. Microbiology and immunology, 60(5), 295-302. https://doi.org/10.1111/1348-0421.12375
Senawong, T., Khaopha, S., Misuna, S., Bunyatratchata, W., Sattayasai, N., Senawong, G., Surapaitoon, A., & Sripa, B. (2014). Histone Deacetylase Inhibitory Activity and Antiproliferative Activity of the Cultured Medium of Aspergillus niger strain TS1. Chiang Mai J Sci, 41(5.1), 981-991. https://epg.science.cmu.ac.th/ejournal/journal-detail.php?id=5266
Seppälä, S., Wilken, St. E., Knop, D., Solomon, K. V., & O’Malley, M. A. (2017). The importance of sourcing enzymes from non-conventional fungi for metabolic engineering and biomass breakdown. Metabolic Engineering, 44, 45-59. https://doi.org/10.1016/J.YMBEN.2017.09.008
Shiryaev, A. G., Zmitrovich, I. V., & Ezhov, O. N. (2018). Taxonomic and ecological structure of basidial macromycetes biota in polar deserts of the Northern Hemisphere. Contemporary problems of ecology, 11, 458-471. https://doi.org/10.1134/S1995425518050086
Sokolová, M., & Ryparová, P. (2019). Biological susceptibility of earth plasters: The influence of relative humidity on fungal growth. International Review of Applied Sciences and Engineering, 10(1), 9-14. https://doi.org/10.1556/1848.2019.0002
Sychev, V. N., Novikova, N. D., Poddubko, S. V., Deshevaya, E. A., & Orlov, O. I. (2020). The Biological Threat: The Threat of Planetary Quarantine Failure as a Result of Outer Space Exploration by Humans. Doklady Biological Sciences, 490, 28–30. https://doi.org/10.1134/S0012496620010093
Takahashi, J. A., Barbosa, B. V., Martins, B. A., Guirlanda, C., & Moura, M. (2020). Use of the versatility of fungal metabolism to meet modern demands for healthy aging, functional foods, and sustainability. Journal of Fungi, 6(4), 223. https://doi.org/10.3390/jof6040223
Tanney, J. B., Visagie, C. M., Yilmaz, N., Seifert, K. A. (2017). Aspergillus subgenus Polypaecilum from the built environment. Studies in Mycology, 88(1), 237-267. https://doi.org/10.1016/j.simyco.2017.11.001
Tesei, D., Chiang, A. J., Kalkum, M., Stajich, J. E., Mohan, G. B. M., Sterflinger, K. & Venkateswaran, K. (2021) Effects of Simulated Microgravity on the Proteome and Secretome of the Polyextremotolerant Black Fungus Knufia chersonesos. Frontiers in Genetics, 12, 638708. https://doi.org/10.3389/fgene.2021.638708
Tunlid, A., Floudas, D., Op de Beeck, M., Wang, T., & Persson, P. (2022). Decomposition of soil organic matter by ectomycorrhizal fungi: Mechanisms and consequences for organic nitrogen uptake and soil carbon stabilization. Frontiers in Forests and Global Change, 5, 934409. https://doi.org/10.3389/ffgc.2022.934409
Urbaniak, C., Morrison, M. D., Thissen, J. B., Karouia, F., Smith, D. J., Mehta, S., Jaing, C., & Venkateswaran, K. (2022). Microbial Tracking-2, a metagenomics analysis of bacteria and fungi onboard the International Space Station. Microbiome 10(100), 1-19. https://doi.org/10.1186/s40168-022-01293-0
Wang, X., & Pecoraro, L. (2021). Analysis of soil fungal and bacterial communities in Tianchi Volcano crater, northeast China.Life, 11(4), 280. https://doi.org/10.3390/life11040280
Winder, R. S. (2024). Mushrooms to Mars: Harnessing Fungi for Sustainable Human Settlements. Acceleron Aerospace Journal, 2(2), 156-165. http://dx.doi.org/10.61359/11.2106-2406
Wösten, H. A. B., Krijgsheld, P., Montalti, M., & Läkk, H. (2018). Growing Fungi Structures in Space. Final Report. European Space Agency. Recuperado de: https://www.esa.int/gsp/ACT/doc/ARI/ARI%20Study%20Report/ACT-RPT-HAB-ARI-16-6101-Fungi_structures.pdf
Yang, W.-J., Gou, F.-L., Wan, Z.-J. (2013). Yield and size of oyster mushroom grown on rice/wheat straw basal substrate supplemented with cotton seed hull. Saudi Journal of Biological Sciences, 20(4), 333-338. https://doi.org/10.1016/j.sjbs.2013.02.006
Yamaguchi, N., Roberts, M. A., Castro, S., Oubre, C., Makimura, K., Leys, N., Grohmann, E., Sugita, T., Ichijo, T., & Nasu, M. (2014). Microbial monitoring of crewed habitats in space-current status and future perspectives. Microbes and Environments, 29(3), 250-256. https://doi.org/10.1264/JSME2.ME14031
Yamazaki, T., Yoshimoto, M., Nishiyama, Y., Okubo, Y., & Makimura, K. (2012). Phenotypic characterization of Aspergillus niger and Candida albicans grown under simulated microgravity using a three-dimensional clinostat. Microbiology and immunology, 56(7), 441-446. https://doi.org/10.1111/j.1348-0421.2012.00471.x
Zalar, P., de Hoog, G. S., Schroers, H.-J., Crous, P. W., Groenewald, J. Z., Gunde-Cimerman, N. (2007). Phylogeny and ecology of the ubiquitous saprobe Cladosporium sphaerospermum, with descriptions of seven new species from hypersaline environments. Studies in Micology, 58(1), 157-183. https://doi.org/10.3114/sim.2007.58.06
Zea, L., Prasad, N., Levy, S. E., Stodieck, L., Jones, A., Shrestha, S., Klaus, D. (2016) A Molecular Genetic Basis Explaining Altered Bacterial Behavior in Space. PLoS ONE, 11(11), e0164359. https://doi.org/10.1371/journal.pone.0164359
Zhan, Z., Xu, M., Li, Y. & Dong, M. (2021). The Relationship between Fungal Growth Rate and Temperature and Humidity. International Journal of Engineering and Management Research, 11(3). https://ssrn.com/abstract=3867229
Zhang, L., Hou, Y., Qu, X., Ma, J. & Bai, F. (2023). Research and Prospect of Microbial Control on Space Station. En: S. Long, & B. S. Dhillon (Eds.), Man-Machine-Environment System Engineering. MMESE 2023. Lecture Notes in Electrical Engineering, 1069. Springer, Singapore. https://doi.org/10.1007/978-981-99-4882-6_51
Zhang, Z., Huang, T., Zhao, M., Hu, Z., Ni, Y., Jiang, J., Cheng, B., Li, X., & Chen, J. (2024). Comparison of soil microbial abundances and co-occurrence networks in the volcanic soil of the cone and crater. CATENA, 236, 107734. https://doi.org/10.1016/j.catena.2023.107734
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Jehoshua Macedo-Bedoya, Flavia Anlas-Rosado, Yakov Quinteros-Gómez (Autor/a)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.