Biomimética de la resistencia a la presión en organismos de las profundidades marinas para la exploración astrobiológica de océanos subterráneos en otros planetas

Autores/as

DOI:

https://doi.org/10.69976/aspast.v1n1.3

Palabras clave:

biomimética, vehículos de exploración, océanos subterráneos, exoplanetas, astrobiología

Resumen

En el marco del diseño de vehículos de exploración de océanos subterráneos en cuerpos celestes como Europa y Encélado, este estudio propone un enfoque biomimético basado en organismos marinos de las profundidades, como peces invertebrados y microbios resistentes a altas presiones y bajas temperaturas. La metodología incluyó una revisión exhaustiva de las adaptaciones biológicas de estos organismos y sus aplicaciones al diseño de robots, la identificación de principios biomiméticos relevantes y el análisis de las condiciones planetarias de lunas y exoplanetas con océanos subterráneos. Los resultados demuestran que las características biomiméticas pueden mejorar la eficiencia y reducir el tamaño de los vehículos de exploración, en comparación con las tecnologías actuales. Se concluye que la aplicación de la biomimética tiene un gran potencial para la exploración astrobiológica en condiciones extremas y se recomienda fomentar investigaciones interdisciplinarias entre biología marina, astrobiología e ingeniería aeroespacial para el desarrollo futuro de tecnologías innovadoras.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Rivaldo Carlos Duran-Aquino, Universidad Nacional Mayor de San Marcos

    I am Rivaldo Duran, a distinguished analog astronaut from Peru with an internationally acclaimed academic and professional background. I graduated with honors in Fluid Mechanical Engineering from the National University of San Marcos and have expanded my education through exchanges at the University of Marburg (Germany), the Polytechnic University of Madrid (Spain), the National Polytechnic Institute (Mexico), and the Research and Development University (Colombia), establishing myself as a well-rounded and adaptable professional.

    In my career, I have held leadership roles in global cutting-edge organizations, including serving as a Technology Ambassador in Russia during the World Youth Forum, a crew engineer at Astroland Space Agency in Spain, and an aerodynamics specialist at Pegasus Aero Group in Mexico. I am the author of numerous scientific researches presented at international conferences such as the International Astronautical Congress in Italy and the Central American Space Congress in Guatemala, addressing innovative topics like sustainability in space missions and the development of advanced technologies for Martian exploration.

    Recognized for my excellence, I was a finalist for the National Youth Award of Peru in Science and Technology and have received distinctions from the American company Planet Labs PBC, the Mexican Space Agency, and the Brazilian Space Agency, among others. My commitment to the community is reflected in my role as a collaborator for various NASA Space Apps Challenge locations, advisor at the Eureka National School Science and Technology Fair, and instructor at Space School. Additionally, I have been featured in various media outlets and serve as the institutional image for the Pre-University Center of San Marcos and the National Scholarship Program.

    As a polyglot, I am fluent in English, French, German, and Russian, which allows me to collaborate effectively in international environments. I continuously enhance my knowledge through extracurricular training at institutions such as the Università di Napoli Federico II, the University of Houston, and the Technical University of Munich, among others. Outside of my professional sphere, I am an enthusiast of calisthenics, mountaineering, and the arts, practicing recorder, folk dances, and choral singing. My passion for learning and personal development makes me an inspiring young scientist and a leader committed to advancing science and technology for the well-being of society

Referencias

Antunes, A., Olsson-Francis, K., & McGenity, T. J. (2020). Exploring deep-sea brines as potential terrestrial analogues of oceans in the icy moons of the outer solar system. Current Issues in Molecular Biology, 38(1), 123–126. https://doi.org/10.21775/cimb.038.123

Ayers, J., Witting, J., Olcott, C., Mcgruer, N., & Massa, D. (2000). Lobster robots. Robotics and Automation Magazine, 5(4), 12–18.

Bartol, I., Patterson, M., & Mann, R. (2001). Swimming mechanics and behavior of the shallow-water brief squid Lolliguncula brevis. Journal of Experimental Biology, 204(21), 3655–3682. https://doi.org/10.1242/jeb.204.21.3655

Colgate, J. E., & Lynch, K. M. (2004). Mechanics and control of swimming: A review. IEEE Journal of Oceanic Engineering, 29(3), 660–673. https://doi.org/10.1109/JOE.2004.833208

Crawford, I. A. (2012). Dispelling the myth of robotic efficiency. Astronomy & Geophysics, 53(2), 2.22–2.26. https://doi.org/10.1111/j.1468-4004.2012.53222.x

Da Fonseca, R. R., Couto, A., Machado, A. M., Brejova, B., Albertin, C. B., Silva, F., Gardner, P., Baril, T., Hayward, A., Campos, A., Ribeiro, Â. M., Barrio-Hernandez, I., Hoving, H., Tafur-Jimenez, R., Chu, C., Frazão, B., Petersen, B., Peñaloza, F., Musacchia, F., . . . Gilbert, M. T. P. (2020). A draft genome sequence of the elusive giant squid, Architeuthis dux. GigaScience, 9(1), giz152. https://doi.org/10.1093/gigascience/giz152

Duman, J. G. (2015). Animal ice-binding (antifreeze) proteins and glycolipids: An overview with emphasis on physiological function. Journal of Experimental Biology, 218(12), 1846–1855. https://doi.org/10.1242/jeb.116905

Gao, F., Wang, Y., Wang, Z., Wang, Y., & Li, J. (2013). Prototype design of a kind of biomimetic cuttlefish underwater robot actuated by SMA wires. Robot, 35(3), 346. https://doi.org/10.3724/SP.J.1218.2013.00346

Hays, L. E., Graham, H. V., Marais, D. J. D., Hausrath, E. M., Horgan, B., McCollom, T. M., Parenteau, M. N., Potter-McIntyre, S. L., Williams, A. J., & Lynch, K. L. (2017). Biosignature preservation and detection in Mars analog environments. Astrobiology, 17(4), 363–400. https://doi.org/10.1089/ast.2016.1627

Helmick, D., Angelova, A., & Matthies, L. (2009). Terrain adaptive navigation for planetary rovers. Journal of Field Robotics, 26(4), 391–410. https://doi.org/10.1002/rob.20292

Hendrix, A. R., Hurford, T. A., Barge, L. M., Bland, M. T., Bowman, J. S., Brinckerhoff, W. B., Buratti, B. J., Cable, M. L., Castillo-Rogez, J. C., Collins, G. C., et al. (2019). The NASA roadmap to ocean worlds. Astrobiology, 19(1), 1–27. https://doi.org/10.1089/ast.2018.1955

Horikawa, D. D. (2012). Survival of tardigrades in extreme environments: A model animal for astrobiology. En Anoxia: Evidence for Eukaryote Survival and Paleontological Strategies (pp. 205–217). Springer Netherlands. https://doi.org/10.1007/978-94-007-1896-8_12

Irvine, L., Palacios, D. M., Urbán, J., & Mate, B. (2017). Sperm whale dive behavior characteristics derived from intermediate-duration archival tag data. Ecology and Evolution, 7(19), 7822–7837. https://doi.org/10.1002/ece3.3322

Li, G., Chen, X., Zhou, F., Liang, Y., Xiao, Y., Cao, X., Zhang, Z., Zhang, M., Wu, B., Yin, S., Xu, Y., Fan, H., Chen, Z., Song, W., Yang, W., Pan, B., Hou, J., Zou, W., He, S., . . . Yang, W. (2021). Self-powered soft robot in the Mariana Trench. Nature, 591, 66–71. https://doi.org/10.1038/s41586-020-03153-z

Li, G., Wong, T., Shih, B., Guo, C., Wang, L., Liu, J., Wang, T., Liu, X., Yan, J., Wu, B., Yu, F., Chen, Y., Liang, Y., Xue, Y., Wang, C., He, S., Wen, L., Tolley, M. T., Zhang, A., . . . Li, T. (2023). Bioinspired soft robots for deep-sea exploration. Nature Communications, 14(1), 7097. https://doi.org/10.1038/s41467-023-42882-3

Lingam, M., Hibberd, A., & Hein, A. M. (2024). A light sail astrobiology precursor mission to Enceladus and Europa. Acta Astronautica, 218, 251–268. https://doi.org/10.1016/j.actaastro.2024.02.040

NASA. (s.f.-a). Europa: Facts - NASA Science. Consultado el 28 de agosto de 2024, desde https://science.nasa.gov/jupiter/moons/europa/europa-facts/

NASA Jet Propulsion Laboratory (JPL). (s.f.-a). BRUIE. Consultado el 28 de agosto de 2024, desde https://www.jpl.nasa.gov/robotics-at-jpl/bruie

Olson, I. C., Kozdon, R., Valley, J. W., & Gilbert, P. U. P. A. (2012). Mollusk shell nacre ultrastructure correlates with environmental temperature and pressure. Journal of the American Chemical Society, 134(17), 7351–7358. https://doi.org/10.1021/ja210808s

Phillips, B. T., Becker, K. P., Kurumaya, S., Gruber, D. F., & Wood, R. J. (2018). A dexterous, glove-based teleoperable low-power soft robotic arm for delicate deep-sea biological exploration. Scientific Reports, 8(1), 14779. https://doi.org/10.1038/s41598-018-33138-y

Descargas

Publicado

28-12-2024

Cómo citar

Pillaca-Llanos, A. C., Serrano-Diaz, S. F., Pachas-Polack, V., & Duran-Aquino, R. C. (2024). Biomimética de la resistencia a la presión en organismos de las profundidades marinas para la exploración astrobiológica de océanos subterráneos en otros planetas. Revista Científica De Astrobiología, 1(1), 1-13. https://doi.org/10.69976/aspast.v1n1.3