Hongos en el espacio

Autores/as

DOI:

https://doi.org/10.69976/aspast.v1n1.2

Palabras clave:

Astrobiología , Biotecnología, Misiones espaciales, resiliencia fúngica

Resumen

Este artículo explora la capacidad de adaptación y resistencia de los hongos en el espacio, subrayando su relevancia para la astrobiología y la sostenibilidad de misiones espaciales de larga duración. A través de una revisión bibliográfica de estudios publicados en bases de datos académicas de alto impacto como Google Scholar, PubMed, Scopus y Web of Science, se analizaron investigaciones sobre la resiliencia de estos organismos frente a condiciones extremas, incluyendo radiación, microgravedad y vacío espacial. Asimismo, se examina el potencial biotecnológico de los hongos para la producción de alimentos, medicamentos y materiales en entornos de recursos limitados y se identifican también riesgos significativos asociados a la biocontaminación y sus posibles efectos adversos sobre la salud de los astronautas, la integridad del equipo y la protección planetaria. En este contexto, se enfatiza la necesidad de desarrollar estrategias efectivas de control micológico y medidas de protección para mitigar estos riesgos en futuras misiones.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Aban, J. L. (2024). Symbiotic fungal biodiversity, structure, role and benefits to their host plants-discovering microbes with potential agricultural significance: A literature probe. International Journal of Biosciences, 24(3), 163-174. http://dx.doi.org/10.12692/ijb/24.3.163-174

Abdrassulova, Z. T., Salybekova, N. N., Childibayev, J. B., Kurmanbaeva, M. S., Ramazanova, A. A., & Bazargaliyeva, A. A. (2016). Biological and Ecological Features of the Fungus Cladosporium Herbarum. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 7(1), 2075-2083.

Baba, A. I., Mir, M. Y., Riyazuddin, R., Cséplő, Á., Rigó, G., & Fehér, A. (2022). Plants in Microgravity: Molecular and Technological Perspectives. International Journal of Molecular Sciences, 23(18), 10548. https://doi.org/10.3390/ijms231810548

Bahram, M., & Netherway, T. (2022). Fungi as mediators linking organisms and ecosystems. FEMS microbiology reviews, 46(2), fuab058. https://doi.org/10.1093/femsre/fuab058

Benoit, M. R., Li, W., Stodieck, L. S., Lam, K. S., Winther, C. L., Roane, T. M., & Klaus, D. M. (2006). Microbial antibiotic production aboard the international Space Station. Applied Microbiology and Biotechnology, 70, 403–411. https://doi.org/10.1007/s00253-005-0098-3

Blachowicz, A., Singh, N. K., Wood, J. M., Debieu, M., O’Hara, N. B., Mason, C. E., & Venkateswaran, K. (2021). Draft Genome Sequences of Aspergillus and Penicillium Species Isolated from the International Space Station and Crew Resupply Vehicle Capsule. Microbiology Resource Announcements, 10(13), e01398-20. https://doi.org/10.1128/MRA.01398-20

Cardwell, G., Bornman, J. F., James, A. P., & Black, L. J. (2018). A Review of Mushrooms as a Potential Source of Dietary Vitamin D. Nutrients, 10(10), 1498. https://doi.org/10.3390/nu10101498

Chander, A. M., Teixeira, M. D. M., Singh, N. K., Williams, M. P., Simpson, A. C., Damle, N., Parker, C. W., Stajich, J. E., Mason, C. E., Torok, T., & Venkateswaran, K. (2022). Description and genome characterization of three novel fungal strains isolated from Mars 2020 mission-associated spacecraft assembly facility surfaces—recommendations for two new genera and one species. Journal of Fungi, 9(1), 31. https://doi.org/10.3390/jof9010031

Checinska, A., Urbaniak, C., Malli, G. B., Stepanov, V. G., Tran, Q., Wood, J. M., Minich, J., McDonald, D., Mayer, T., Knight, R., Karouia, F., Fox, G. E., & Venkateswaran, K. (2019). Characterization of the total and viable bacterial and fungal communities associated with the International Space Station surfaces. Microbiome, 7(50), 1-21. https://doi.org/10.1186/s40168-019-0666-x

Chen, X., Wang, Y., Wang, Y., Zhang, Y., Shen, Y., He, X., & Xiao, C. (2023). A Natural Moisture Gradient Affects Soil Fungal Communities on the South Shore of Hulun Lake, Inner Mongolia, China. Journal of fungi (Basel, Switzerland), 9(5), 549. https://doi.org/10.3390/jof9050549

Cook, K., Sharma, J., Taylor, A. D., Herriott, I., & Taylor, D. L. (2022). Epiphytic fungal communities vary by substrate type and at submetre spatial scales. Molecular Ecology, 31(6), 1879-1891. https://doi.org/10.1111/mec.16358

Cortesão, M. F. (2022). Morphological and molecular adaptation of Aspergillus niger to simulated spaceflight and Mars-like conditions. [Thesis]. University Goettingen Repository, Alemania.

Cortesão, M., Schütze, T., Marx, R., Moeller, R., & Meyer, V. (2020). Fungal Biotechnology in Space: Why and How? En H. Nevalainen (Eds.), Grand Challenges in Fungal Biotechnology (pp. 501-535). Springer. https://doi.org/10.1007/978-3-030-29541-7_18

Cortesão, M., Siems, K., Koch, S., Beblo-Vranesevic, K., Rabbow, E., Berger, T., Lane, M., James, L., Johnson, P., Waters, S. M., Verma, S. D, Smith, D. J., & Moeller, R. (2021). MARSBOx: fungal and bacterial endurance from a balloon-flown analog mission in the stratosphere. Frontiers in microbiology, 12, 601713. https://doi.org/10.3389/fmicb.2021.601713

de Menezes, G. C. A., Câmara, P. E., Pinto, O. H. B., Carvalho-Silva, M., Oliveira, F. S., Souza, C. D., Reynaud, C. E. Rosa, L. H. (2021). Fungal diversity present on rocks from a polar desert in continental Antarctica assessed using DNA metabarcoding. Extremophiles, 25, 193-202. https://doi.org/10.1007/s00792-021-01221-4

de Oliveira, V. B., de Souza, A. F., Lins, U. M. D. B. L., da Silva Andrade, R. F., de Campos-Takaki, G. M., & de Lima, M. A. B. (2022). Antimicrobial potential of filamentous fungi growing on renewable substrates. Research, Society and Development, 11(11), e570111133958. https://doi.org/10.33448/rsd-v11i11.33958

Derbyshire, E. J., Theobald, H., Wall, B. T., & Stephens, F. (2023). Food for our future: the nutritional science behind the sustainable fungal protein – mycoprotein. A symposium review. Journal of Nutritional Science, 11(12), e44. https://doi.org/10.1017/jns.2023.29

Deshevaya, E. A., Fialkina, S. V., Shubralova, E. V., Tsygankov, O. S., Khamidullina, N. M., Vasilyak, L. M., Pecherkin, V. Y., Shcherbakova, V. A., Nosovsky, A. M., & Orlov, O. I. (2024). Survival of microorganisms during two-year exposure in outer space near the ISS. Scientific Reports, 14(1), 334. https://doi.org/10.1038/s41598-023-49525-z

Devarayan, K., Sathishkumar, Y., Lee, Y. S., & Kim, B. S. (2015). Effect of microgravity on fungistatic activity of an -aminophosphonate chitosan derivative against aspergillus niger. PloS One, 10(10), e0139303. https://doi.org/10.1371/journal.pone.0139303

Dublin, M., & Volz, P. A. (1973). Space related research in mycology concurrent with the first decade of manned space exploration. Space Life Sciences, 4, 223-230. https://doi.org/10.1007/BF00924469

Evans, C. A., Robinson, J. A., & Tate-Brown, J. M. (2009). Research on the International Space Station: An Overview. En Proceedings of the 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, 5–9. https://doi.org/10.2514/6.2009-186

Glamočlija, J., & Soković, M. (2017). Fungi a source with huge potential for “mushroom pharmaceuticals. Lekovite Sirovine, 37, 50-56 https://doi.org/10.5937/LEKSIR1737050G

Gomoiu, I., Chatzitheodoridis, E., Vadrucci, S., & Walther, I. (2013). The Effect of Spaceflight on Growth of Ulocladium chartarum Colonies on the International Space Station. PloS One, 8(4), e62130. https://doi.org/10.1371/journal.pone.0062130

Gomoiu, I., Chatzitheodoridis, E., Vadrucci, S., Walther, I., & Cojoc, R. (2016). Fungal spores viability on the International Space Station. Origins of Life and Evolution of Biospheres, 46(4), 403-418. https://doi.org/10.1007/s11084-016-9502-5

Greetham, L., McIntyre, G., Bayer, E., Winiski, J., & Araldi, S. (2014). Mycological Biopolymers Grown in Void Space Tooling. https://patentimages.storage.googleapis.com/5b/8d/88/06f5660ba6a1e1/US11277979.pdf

Grimm, D., & Wösten, H. A. B. (2018). Mushroom cultivation in the circular economy. Appl Microbiol Biotechnol, 102, 7795–7803. https://doi.org/10.1007/s00253-018-9226-8

Grossart, H. P., Van den Wyngaert, S., Kagami, M., Wurzbacher, C., Cunliffe, M., & Rojas-Jimenez, K. (2019). Fungi in aquatic ecosystems. Nature Reviews Microbiology, 17, 339–54. https://doi.org/10.1038/s41579-019-0175-8

Günyar, Ö. A., & Uztan, A. H. (2021). Environmental Mycobiotechnology in Special Reference to Fungal Bioremediation. En: N. Saglam, F. Korkusuz & R. Prasad (Eds.), Nanotechnology Applications in Health and Environmental Sciences. Nanotechnology in the Life Sciences (pp. 361-383), Springer. https://doi.org/10.1007/978-3-030-64410-9_20

Guzmán-Chávez, F., Zwahlen, R. D., Bovenberg, R. A. L., & Driessen, A. J. M. (2018). Engineering of the Filamentous Fungus Penicillium chrysogenum as Cell Factory for Natural Products. Frontiers in Microbiology, 9, 2768. https://doi.org/10.3389/fmicb.2018.02768

Hupka, M., Kedia, R., Schauer, R., Shepard, B., Granados-Presa, M., Vande, M., & Flores, P. (2023). Morphology of Penicillium rubens Biofilms Formed in Space. Life, 13(4), 1001. https://doi.org/10.3390/life13041001

Kaur, K., & Verma, R. K. (2021). Fungal resources: Current utilization, future prospects, and challenges. En: J. Singh & P. Gehlot (Eds.), New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 15-38). https://doi.org/10.1016/B978-0-12-821005-5.00002-8

Khan, A. A., Khan, A. A., Bacha, N., Ahmad, B., Lutfullah, G., Farooq, U., & Cox, R. J. (2014). Fungi as chemical industries and genetic engineering for the production of biologically active secondary metabolites. Asian Pacific Journal of Tropical Biomedicine, 4(11), 859-870. https://doi.org/10.12980/APJTB.4.2014APJTB-2014-0230

Kirchhoff, L., Olsowski, M., Rath, P. M., & Steinmann, J. (2019). Exophiala dermatitidis: Key issues of an opportunistic fungal pathogen. Virulence, 10(1), 984–998. https://doi.org/10.1080/21505594.2019.1596504

Kittang, A.-I., Iversen, T.-H., Fossum, K. R., Mazars, C., Carnero-Diaz, E., Boucheron-Dubuisson, E., Le Disquet, I., Legué, V., Herranz, R., Pereda-Loth, V., & Medina, F. J. (2014). Exploration of plant growth and development using the European modular cultivation system facility on the international Space Station. Plant Biololgy, 16(3), 528–538. https://doi.org/10.1111/plb.12132

Koehle, A. P., Brumwell, S. L., Seto, E. P., Lynch, A. M., & Urbaniak, C. (2023). Microbial applications for sustainable space exploration beyond low Earth orbit. npj Microgravity, 9(1), 47. https://doi.org/10.1038/s41526-023-00285-0

Kovalev, V. S., Grandl, W., Manukovsky, N. S., Tikhomirov, A. A., & Böck, C. (2022). Modeling a lunar base mushroom farm. Life sciences in space research, 33, 1–6. https://doi.org/10.1016/j.lssr.2021.12.005

Kržišnik, D., & Gonçalves, J. (2023). Environmentally conscious technologies using fungi in a climate-changing world. Earth, 4(1), 69-77. https://doi.org/10.3390/earth4010005

Lange, L. (2014). The importance of fungi and mycology for addressing major global challenges. IMA Fungus, 5, 463-471. https://doi.org/10.5598/IMAFUNGUS.2014.05.02.10

Liu, Q., Zhang, Q., Dang, L., Chen, N., Yin, Z., Ma, L., Feng, Y., Li, W., Wei, Y., Zhang, W., Lu, L., Dong, C., Yuan, J., & Xiao, K. (2024). The interaction between Aspergillus brasiliensis and exposed copper circuits in the space microgravity environment. Corrosion Science, 234, 112132. https://doi.org/10.1016/j.corsci.2024.112132

Macías-Paz, I. U., Pérez-Hernández, S., Tavera-Tapia, A., Luna-Arias, J. P., Guerra-Cárdenas, J. E., & Reyna-Beltrán, E. (2023). Revista Argentina de Microbiología, 55(2), 1889-198. https://doi.org/10.1016/j.ram.2022.08.003

Makimura, K., Satoh, K., Sugita, T., & Yamazaki, T. (2011). Fungal biota in manned space environment and impact on human health. Nihon Eiseigaku zasshi. Japanese Journal of Hygiene, 66(1), 77-82. https://doi.org/10.1265/jjh.66.77

Manukovsky, N. S., Kovalev, V. S., Trifonov, S. V., & Hranovskaya, O. V. (2023). Investigation of the production and dietary features of oyster mushrooms for a planned lunar farm. Heliyon, 9(5), e15524. https://doi.org/10.1016/j.heliyon.2023.e15524

Martirena-Ramírez, A., Serrano-Gamboa, J. G., Pérez-Llano, Y., Zenteno-Alegría, C. O., Iza-Arteaga, M. L., del Rayo, M., Fernández-Ocaña, A. M., Batista-García, R. A., & Folch-Mallol, J. L. (2024). Aspergillus brasiliensis E_15.1: A Novel Thermophilic Endophyte from a Volcanic Crater Unveiled through Comprehensive Genome-Wide, Phenotypic Analysis, and Plant Growth-Promoting Trails. Journal of Fungi, 10(8), 517. https://doi.org/10.3390/jof10080517

McDonald, J. T., Stainforth, R., Miller, J., Cahill, T., da Silveira, W. A., Rathi, K. S., Hardiman, G., Taylor, D., Costes, S. V., Chauhan, V., Meller, R., & Beheshti, A. (2020). NASA GeneLab Platform Utilized for Biological Response to Space Radiation in Animal Models. Cancers, 12(2), 381. https://doi.org/10.3390/cancers12020381

Mermel, L.A. (2012). Infection Prevention and Control during Prolonged Human Space Travel. Clinical Infectious Diseases, 56(1), 123–130. https://doi.org/10.1093/cid/cis861

Mousavi, B., Hedayati, M., Hedayati, N., Ilkit, M., & Syedmousavi, S. (2016). Aspergillus species in indoor environments and their possible occupational and public health hazards. Curr Med Mycol, 2, 36–42. https://doi.org/10.18869/acadpub.cmm.2.1.36

Mwangi, R. W., Macharia, J. M., Wagara, I. N., & Bence, R. L. (2022). The antioxidant potential of different edible and medicinal mushrooms. Biomedicine & Pharmacotherapy, 147(2022), 112621. https://doi.org/10.1016/j.biopha.2022.112621

Nastasi, N., Haines, S. R., Bope, A., Meyer, M. E., Horack, J. M., & Dannemiller, K. C. (2024). Fungal diversity differences in the indoor dust microbiome from built environments on earth and in space. Scientific Reports, 14(1), 11858. https://doi.org/10.1038/s41598-024-62191-z

Netherway, T., Bengtsson, J., Krab, E. J., & Bahram, M. Biotic interactions with mycorrhizal systems as extended nutrient acquisition strategies shaping forest soil communities and functions. Basic and Applied Ecology, 50, 25–42. https://doi.org/10.1016/j.baae.2020.10.002

Neuberger, K., Lux-Endrich, A., Panitz, C., & Horneck, G. (2015). Survival of spores of Trichoderma longibrachiatum in space: data from the space experiment SPORES on EXPOSE-R. International Journal of Astrobiology, 14(1), 129-135. https://doi.org/10.1017/S1473550414000408

Nunes, J. M., Bizerra, F. C., Ferreira, R. C. E., & Colombo, A. L. (2013). Molecular identification, antifungal susceptibility profile, and biofilm formation of clinical and environmental Rhodotorula species isolates. Antimicrob Agents Chemother, 57(1), 382–389. https://doi.org/10.1128/aac.01647-12

Onofri, S., Selbmann, L., Barreca, D., Isola, D., & Zucconi, L. (2009). Do fungi survive under actual space conditions? Searching for evidence in favour of lithopanspermia. Plant Biosystems, 143(1), S85-S87. https://doi.org/10.1080/11263500903208393

Onofri, S., Selbmann, L., Pacelli, C., De Vera, J. P., Horneck, G., Hallsworth, J. E., & Zucconi, L. (2018). Integrity of the DNA and cellular ultrastructure of cryptoendolithic fungi in space or Mars conditions: a 1.5-year study at the International Space Station. Life, 8(2), 23. https://doi.org/10.3390/life8020023

Onofri, S., de Vera, J.-P., Zucconi, L., Selbmann, L., Scalzi, G., Venkateswaran, K. J., Rabbow, E., de la Torre, R., & Horneck, G. (2015). Survival of Antarctic Cryptoendolithic Fungi in Simulated Martian Conditions On Board the International Space Station. Astrobiology, 15(12), 1052-1059. https://doi.org/10.1089/ast.2015.1324

Owczarek-Kościelniak, M. M., Chlebicki, A., & Sterflinger, K. Aureobasidium pullulans from Juncus trifidus L. roots. (2016). Phytotaxa, 266(2), 125-133. https://doi.org/10.11646/phytotaxa.266.2.6

Pacelli, C., Alessia, C., Siong, L. M., Lorenzo, A., Moeller, R., Fujimori, A., Igor, S., & Silvano, O. (2021). Insights into the Survival Capabilities of Cryomyces antarcticus Hydrated Colonies after Exposure to Fe Particle Radiation. Journal of Fungi, 7(7), 495. https://doi.org/10.3390/JOF7070495

Pacelli, C., Selbmann, L., Zucconi, L., De Vera, J. P., Rabbow, E., Horneck, G., de la Torre, R., & Onofri, S. (2016). BIOMEX experiment: ultrastructural alterations, molecular damage and survival of the fungus Cryomyces antarcticus after the experiment verification tests. Origins of Life and Evolution of Biospheres, 47, 187-202. https://doi.org/10.1007/s11084-016-9485-2

Pasanen, A.-L., Kalliokoski, P., Pasanen, P., Jantunen, M. J., & Nevalainen, A. (1991). Laboratory studies on the relationship between fungal growth and atmospheric temperature and humidity. Environment International, 17(4), 225-228. https://doi.org/10.1016/0160-4120(91)90006-C

Pernice, M. C., Forn, I., Logares, R., & Massana, R. (2024). A fungi hotspot deep in the ocean: explaining the presence of Gjaerumia minor in equatorial Pacific bathypelagic waters. Scientific Reports, 14(1), 10601. https://doi.org/10.1038/s41598-024-61422-7

Pierson, D., Botkin, D., Bruce, R., Castro, V., Smith, M., Oubre, C., & Ott, C. (2012). Environmental monitoring: a comprehensive handbook. En: Environmental monitoring: a comprehensive handbook. DHI Publishing, LLC River Grove, IL.

Pilafidis, S., Diamantopoulou, P., Gkatzionis, K., & Sarris, D. (2022). Valorization of agro-industrial wastes and residues through the production of bioactive compounds by macrofungi in liquid state cultures: Growing circular economy. Applied Sciences, 12(22), 11426. https://doi.org/10.3390/app122211426

Ponizovskaya, V. B., Dyakov, M. Yu., Antropova, A. B., Bilanenko, E. N., Mokeeva, V. L., & Ilyin, V. K. (2017). The survival of micromycetes exposed to space conditions. Moscow University Biological Sciences Bulletin, 72, 6-12. https://doi.org/10.3103/S0096392517010023

Prasad, B., Richter, P., Vadakedath, N., Haag, F. W., Strauch, S. M., Mancinelli, R., Schwarzwälder, A., Etcheparre, E., Gaume, N. & Lebert, M. (2021). How the space environment influences organisms: An astrobiological perspective and review. International Journal of Astrobiology, 20(2), 159-177. https://doi.org/10.1017/S1473550421000057

Recio, R., Meléndez-Carmona, M. Á., Martín-Higuera, M. C., Pérez, V., López, E., López-Medrano, F., & Pérez-Ayala, A. (2019). Trichoderma longibrachiatum: an unusual pathogen of fungal pericarditis.Clinical microbiology and infection, 25(5), 586–587. https://doi.org/10.1016/j.cmi.2019.02.006

Sánchez, C. Reactive oxygen species and antioxidant properties from mushrooms. Synthetic and Systems Biotechnology, 2(1), 13-22. https://doi.org/10.1016/j.synbio.2016.12.001

Sánchez, F. J., De la Torre, R., Sancho, L., Mateo-Martí, E., Martínez-Frías, J., & Horneck, G. (2010). Aspicilia fruticulosa: one of the most resistant organisms to outer space conditions and Mars simulated environment. Origins of Life and Evolution of the Biosphere, 40, 546-547.

Satyaveer & Rajanna, K. B. (2022). Health Benefits and Medicinal Value of Mushroom. Agriculture & Environment, 3(9), 13-17.

Satoh, K., Alshahni, M. M., Umeda, Y., Komori, A., Tamura, T., Nishiyama, Y., Yamazaki, T., & Makimura, K. (2021). Seven years of progress in determining fungal diversity and characterization of fungi isolated from the Japanese Experiment Module KIBO, International Space Station. Microbiology and Immunology, 65(11), 463-471. https://doi.org/10.1111/1348-0421.12931

Satoh, K., Yamazaki, T., Nakayama, T., Umeda, Y., Alshahni, M. M., Makimura, M., & Makimura, K. (2016). Characterization of fungi isolated from the equipment used in the International Space Station or Space Shuttle. Microbiology and immunology, 60(5), 295-302. https://doi.org/10.1111/1348-0421.12375

Senawong, T., Khaopha, S., Misuna, S., Bunyatratchata, W., Sattayasai, N., Senawong, G., Surapaitoon, A., & Sripa, B. (2014). Histone Deacetylase Inhibitory Activity and Antiproliferative Activity of the Cultured Medium of Aspergillus niger strain TS1. Chiang Mai J Sci, 41(5.1), 981-991. https://epg.science.cmu.ac.th/ejournal/journal-detail.php?id=5266

Seppälä, S., Wilken, St. E., Knop, D., Solomon, K. V., & O’Malley, M. A. (2017). The importance of sourcing enzymes from non-conventional fungi for metabolic engineering and biomass breakdown. Metabolic Engineering, 44, 45-59. https://doi.org/10.1016/J.YMBEN.2017.09.008

Shiryaev, A. G., Zmitrovich, I. V., & Ezhov, O. N. (2018). Taxonomic and ecological structure of basidial macromycetes biota in polar deserts of the Northern Hemisphere. Contemporary problems of ecology, 11, 458-471. https://doi.org/10.1134/S1995425518050086

Sokolová, M., & Ryparová, P. (2019). Biological susceptibility of earth plasters: The influence of relative humidity on fungal growth. International Review of Applied Sciences and Engineering, 10(1), 9-14. https://doi.org/10.1556/1848.2019.0002

Sychev, V. N., Novikova, N. D., Poddubko, S. V., Deshevaya, E. A., & Orlov, O. I. (2020). The Biological Threat: The Threat of Planetary Quarantine Failure as a Result of Outer Space Exploration by Humans. Doklady Biological Sciences, 490, 28–30. https://doi.org/10.1134/S0012496620010093

Takahashi, J. A., Barbosa, B. V., Martins, B. A., Guirlanda, C., & Moura, M. (2020). Use of the versatility of fungal metabolism to meet modern demands for healthy aging, functional foods, and sustainability. Journal of Fungi, 6(4), 223. https://doi.org/10.3390/jof6040223

Tanney, J. B., Visagie, C. M., Yilmaz, N., Seifert, K. A. (2017). Aspergillus subgenus Polypaecilum from the built environment. Studies in Mycology, 88(1), 237-267. https://doi.org/10.1016/j.simyco.2017.11.001

Tesei, D., Chiang, A. J., Kalkum, M., Stajich, J. E., Mohan, G. B. M., Sterflinger, K. & Venkateswaran, K. (2021) Effects of Simulated Microgravity on the Proteome and Secretome of the Polyextremotolerant Black Fungus Knufia chersonesos. Frontiers in Genetics, 12, 638708. https://doi.org/10.3389/fgene.2021.638708

Tunlid, A., Floudas, D., Op de Beeck, M., Wang, T., & Persson, P. (2022). Decomposition of soil organic matter by ectomycorrhizal fungi: Mechanisms and consequences for organic nitrogen uptake and soil carbon stabilization. Frontiers in Forests and Global Change, 5, 934409. https://doi.org/10.3389/ffgc.2022.934409

Urbaniak, C., Morrison, M. D., Thissen, J. B., Karouia, F., Smith, D. J., Mehta, S., Jaing, C., & Venkateswaran, K. (2022). Microbial Tracking-2, a metagenomics analysis of bacteria and fungi onboard the International Space Station. Microbiome 10(100), 1-19. https://doi.org/10.1186/s40168-022-01293-0

Wang, X., & Pecoraro, L. (2021). Analysis of soil fungal and bacterial communities in Tianchi Volcano crater, northeast China.Life, 11(4), 280. https://doi.org/10.3390/life11040280

Winder, R. S. (2024). Mushrooms to Mars: Harnessing Fungi for Sustainable Human Settlements. Acceleron Aerospace Journal, 2(2), 156-165. http://dx.doi.org/10.61359/11.2106-2406

Wösten, H. A. B., Krijgsheld, P., Montalti, M., & Läkk, H. (2018). Growing Fungi Structures in Space. Final Report. European Space Agency. Recuperado de: https://www.esa.int/gsp/ACT/doc/ARI/ARI%20Study%20Report/ACT-RPT-HAB-ARI-16-6101-Fungi_structures.pdf

Yang, W.-J., Gou, F.-L., Wan, Z.-J. (2013). Yield and size of oyster mushroom grown on rice/wheat straw basal substrate supplemented with cotton seed hull. Saudi Journal of Biological Sciences, 20(4), 333-338. https://doi.org/10.1016/j.sjbs.2013.02.006

Yamaguchi, N., Roberts, M. A., Castro, S., Oubre, C., Makimura, K., Leys, N., Grohmann, E., Sugita, T., Ichijo, T., & Nasu, M. (2014). Microbial monitoring of crewed habitats in space-current status and future perspectives. Microbes and Environments, 29(3), 250-256. https://doi.org/10.1264/JSME2.ME14031

Yamazaki, T., Yoshimoto, M., Nishiyama, Y., Okubo, Y., & Makimura, K. (2012). Phenotypic characterization of Aspergillus niger and Candida albicans grown under simulated microgravity using a three-dimensional clinostat. Microbiology and immunology, 56(7), 441-446. https://doi.org/10.1111/j.1348-0421.2012.00471.x

Zalar, P., de Hoog, G. S., Schroers, H.-J., Crous, P. W., Groenewald, J. Z., Gunde-Cimerman, N. (2007). Phylogeny and ecology of the ubiquitous saprobe Cladosporium sphaerospermum, with descriptions of seven new species from hypersaline environments. Studies in Micology, 58(1), 157-183. https://doi.org/10.3114/sim.2007.58.06

Zea, L., Prasad, N., Levy, S. E., Stodieck, L., Jones, A., Shrestha, S., Klaus, D. (2016) A Molecular Genetic Basis Explaining Altered Bacterial Behavior in Space. PLoS ONE, 11(11), e0164359. https://doi.org/10.1371/journal.pone.0164359

Zhan, Z., Xu, M., Li, Y. & Dong, M. (2021). The Relationship between Fungal Growth Rate and Temperature and Humidity. International Journal of Engineering and Management Research, 11(3). https://ssrn.com/abstract=3867229

Zhang, L., Hou, Y., Qu, X., Ma, J. & Bai, F. (2023). Research and Prospect of Microbial Control on Space Station. En: S. Long, & B. S. Dhillon (Eds.), Man-Machine-Environment System Engineering. MMESE 2023. Lecture Notes in Electrical Engineering, 1069. Springer, Singapore. https://doi.org/10.1007/978-981-99-4882-6_51

Zhang, Z., Huang, T., Zhao, M., Hu, Z., Ni, Y., Jiang, J., Cheng, B., Li, X., & Chen, J. (2024). Comparison of soil microbial abundances and co-occurrence networks in the volcanic soil of the cone and crater. CATENA, 236, 107734. https://doi.org/10.1016/j.catena.2023.107734

Descargas

Publicado

13-11-2024

Número

Sección

Artículo de investigación

Cómo citar

Macedo Bedoya, J., Anlas Rosado, F. A., & Quinteros Gómez, Y. M. (2024). Hongos en el espacio. Revista Científica De Astrobiología, 1(1), e2. https://doi.org/10.69976/aspast.v1n1.2